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Abstract-Numerical analyses have been conducted for combined free and forced laminar convection flow 
at low P&let numbers in the thermal entrance region of horizontal and vertical pipes. Effects of both 
buoyancy force and axial conduction on the hydrodynamic and heat transfer characteristics are sys- 
tematically investigated, and numerical results are extensively presented for velocity and temperature 
profiles, distributions of the Nusselt number and wall shear stress in both horizontal and vertical pipes. In 
a horizontal pipe, the secondary flow pattern has already developed at the beginning of heating and a reverse 
flow occurs near the pipe top as the axial conduction and buoyancy effects become large. Consequently, the 
loeal Nusselt number at the pipe top and then the circumferential average Nusseh number decrease with 
increasing secondary flow. The regime of reverse flow is clearly identified in the Pe-Ra coordinates. In a 
vertical pipe, flow reversals are observed at the pipe center in the heating case and near the wall in the 
coaling case at relatively high 1 Gr/Re 1. The regime of reverse flow is identified for both heating and cooling 

cases in the Pe-1 Gr/Re 1 coordinates. 

1. INTRODUCTION 

COMBINED free and forced convection in the pipe 
entrance region has many diverse industrial and engin- 
eering applications, such as heat exchangers and 
chemical processes. Because of the practical interest 
numerous investigations of mixed flows in the pipe 
entrance region have been conducted analytically and 
experimentally by various researchers, and great pro- 
gress has been made in this area during the past 20 
years. 

Prior to 1980 there were several analytical studies 
[l-4] on the entrance region of horizontal circular 
pipes. They used the large Prandtl number assumption 
which neglected the nonlinear inertia terms in the 
momentum equations to avoid the complexities aris- 
ing from the three-dimensionality of flow, and thus 
the results were consequently available for a limited 
situation and unsuitable for small and even moderate 
Prandtl number fluids. Later, numerical analyses 
without the large Prandtl number assumption were 
conducted and significant resulrs were obtained by 
Hishida et al. [S] for Pr = 0.71 and by Chou and 
Hwang [6] for Pr = 0.7, 2 and 5. In ref. [6] the axial 
viscous and conduction terms included in the momen- 
tum and thermal energy equations were neglected for 
ease of computation. 

On the other hand, the combined flows in the 
entrance region of vertical pipes have also been inves- 
tigated analytically and experimentally by several 

t To whom correspondence should be addressed. 

researchers. Numerical analyses were performed by 
Lawrence and Chato [7] and Marner and McMillan 
[8] with the assumption that the axial diffusions of 
heat and momentum could be ignored. Calculations 
taking account of the axial diffusions of heat and 
momentum were carried out by Zeldin and Schmidt 
[9] for air flow in an isothermal pipe with Pe of about 
250. Kieda et al. [lo] analyzed upward and downward 
flows of air and water with temperature-dependence 
properties and observed flow reversals under both 
flow conditions. Morton et al. [l l] focused their atten- 
tion on a recirculating behavior produced in mixed 
flows and compared the numerical results with exper- 
imental ones for water. 

The investigations mentioned above were con- 
cerned with mixed convection in the entrance region 
for relatively high Prandtl number fluids. There have 
been few investigations of low Prandtl or P&let num- 
ber fluids, such as liquid metals which are used in 
practice as heat transfer media in the nuclear-reactor 
cooling process and compact heat exchangers. For 
low Pr fluids the axial conduction plays a pronounced 
role in flow and heat transfer characteristics, as is well 
known for pure forced convection in pipes [12-161. 
In the present study low P&let number flows in the 
thermal entrance regions of horizontal and vertical 
pipes are systematically analyzed in view of the simul- 
taneous effects of free convection and axial conduc- 
tion. The variation of velocity and thermal fields in 
the pipe entrance region are extensively investigated 
and the regime of reverse flow occurrence is clearly 
identified with the relevant flow parameters. 
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NOMENCLATURE 

Gr 
9 
h 
NIA 

Grashof number, gP(t$ - tk)rG3/vZ 
gravitational acceleration 
heat transfer coefficient 
local Nusselt number, 2r&h/A 

u’, v’, w’ velocity components in Y’, 4 and x’ 
directions 

W;, mean velocity in x’ direction. 

NU 

P 

Pe 
Pr 
P 
P/ 
Ra 
Re 
r,+,x 

%V, w 

circumferential average Nusselt 
number, equation (24) 
dimensionless pressure, equation 

(17) 
P&let number, Re Pr 
Prandtl number 
dimensionless pressure, equation (7) 
pressure 
Rayleigh number, Gr Pr 
Reynolds number, 2rhwh/v 
dimensionless cylindrical 
coordinates, equation (7) 
cylindrical coordinates 
pipe radius 
fluid temperature 
uniform entrance fluid temperature 
uniform wall temperature 
dimensionless velocity components, 
equation (8) 
dimensionless velocity components 
in r, 4 and x directions, equation (7) 

Greek symbols 
P coefficient of thermal expansion 
0 dimensionless temperature 

difference, equation (7) 
@b dimensionless bulk temperature, 

equation (22) 
II thermal conductivity 
p dynamic viscosity 
V kinematic viscosity 
C dimensionless axial coordinate, 

equation (9) or (19) 
P density 
Z dimensionless time, equation (7) 
TW dimensionless local wall shear 

stress, equation (2 1) 
z’ time. 

Subscript 

+ circumferential variation for 
horizontal pipe. 

2. GOVERNING EQUATIONS AND NUMERICAL (a) Insulated Isothermal 
METHOD 

2.1. Horizontal pipe 
The flow field in a horizontal pipe is partitioned 

into two regions with a view to investigating the axial 
conduction effect. The pipe geometry and cylindrical 
coordinates are shown in Fig. 1 (a}. The pipe wall is 
insulated in the upstream region (x’ < 0) and kept at 
a constant temperature t; in the downstream region 
(x’ > 0). The fluid enters the pipe with a parabolic 
velocity profile and a uniform temperature tb at a 
location far upstream of the beginning of heating. 

The dimensionless governing equations of conti- 
nuity, momentum, and energy with the Boussinesq 
approximation are 

(1) 

u*+ v* 
r 

r Re 2 ap 
--(-) m+vw-;g 

2 2 

2 av 

r* 84 
-Gr.r@cos$ (2) 

(b) 
Isothermal 

(Downstream) 

Insulated 
(Upstream) 

FIG. 1. Pipe geometry and coordinates : (a) horizontal pipe ; 
(b) vertical pipe. 

+V’V-~~+2ar/+Gv-rOsin& (3) 
r* 34 
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= _- ;~~+VW-f$~+” (4) 
Y2 

where the Laplacian operator is defined as 

The dimensionless variables in equations (l)-(6) are 
chosen as follows : 

z = (z’wbjrh) (2/Re), x = (d/r;) (2/Re) 

r = f/r&, 24 = (d/w;) (R42) 

v = (d/w&) (Re/2), w = w//w& 

e =4!t’- t’,)/(tb -t’,), p = p’/(pw;2/2). (7) 

Also, the following transformations of the variables 
are used to ensure numerical stability and to make the 
axial boundary finite : 

u= I-u, V= ru, W= rw (8) 

< = 1/(1-30x)-l for --co < x < 0 

5 = l--I/(1+30x) for0 < x < co. (9) 

The above set of equations is sufficient to obtain solu- 
tions for U, V, IV, 9 andp. For the pressure, however, 
a more accurate solution can be determined from the 
Poisson form of the pressure equation, which is 
derived from the continuity and momentum equations 
and is expressed as follows : 

v=p= -2(g--[;{g+: 

UD 

-> r 

u2+vz 2 uav vau 
+ 

r* +T-p--p ( r 84 T a4 > 

12awava 12audcaw 
r a4 ag dx ai' dx ar II ’ (10) 

where D, called the dilatation term, is 

~++‘““+>~d& 
r a4 

(11) 

The dilatation term D is retained in the Poisson equa- 
tion in order to avoid error accumulation in the iter- 
ation, although the continuity equation (1) just states 
that D = 0. 

The boundary conditions for equations (l)-(5) and 
(10) are as follows : 

<= -l,O<r<l: U= V=O 

w = W/r = 2(1 -r’), 8 = 1 

(+/a0 (dS/dx) = - 16 

t=l,O<r<l: U=V=O 

(12) 

w = W/r = 2(1-r2), 8 = 0 

(ap/X) (dtldx) = - 16 (13) 

-1 <c<O,r= 1: u= v= w=o, af?/ar=o 
aplar = 2(2/Re)’ (a2 u/ar2 -au/&- Gr 0 cos #) 

(14) 

O<c<l,r=l: u=v= w=o, Q=O 

apI& = 2(2/Re)2 (a' u/a? -au/&) (15) 

-1 < 5 < 1,0 Q r < l,& = 0,7c: v=o. (16) 

The pressure varies linearly with the axial distance in 
the fully developed flow region, as seen from equations 
(12) and (13). Hence, let the asymptotic pressure solu- 
tion be P. Then we can write P as 

P(r,#,x) =p+l6x. (17) 

Using P instead of p, the boundary conditions for P 
become equal to equations (14) and (15) at the pipe 
wall, and are written, respectively, at infinite upstream 
and downstream in equations (12) and (13) as 

5:= -l,o<r< 1: aP/ag=o 
<= l,O<r< 1: afya< = 0. (18) 

The finite difference method was employed to 
numerically solve the above equations. Euler’s modi- 
fied method and the Crank-Nicolson method were 
used for the time integration. The advection terms in 
the time-dependent momentum and energy equations 
were approximated by upwind differencing. The 
derivative boundary conditions for the pressure P 
were evaluated by applying Miyakoda’s scheme [ 171. 
In order to investigate the low Pr effect systematically, 
the problems for a wide range of Pr including those 
of liquid metals such as mercury and sodium were 
solved with the successive over-relaxation (SOR) 
method. The ranges of parameters used in the study 
are Pe = 0.001-700 and Ra = 0.05-35 000 (consisting 
of Pr = 0.00001-7, Re = lo%300 and Gr = 3000- 
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20 000). The calculations were carried out in one-half 
of the circular region, because of the symmetry about 
the vertical centerline. The mesh size of 26 X 27 X 51 
(Y, +,5) was used. For the case of Pr = 0.025 
(pe = 2.5) and ~a = 500, where the distortions of 
velocity and temperature profiles are strongest, a finer 
mesh size of 5 1 x ‘27 x 10 1 was used in order to COdirm 

the numerical accuracy. There was no significant 
difference between the results with two mesh sizes. 
The computations continued with increasing time 
levels until the steady-state profiles were obtained. 
The criterion for convergence was 1 Qnil - Qn I/ 
I Q” Iax < lop5 (Q : U, V, W, etc.). All problems have 
been solved on TITAN 3000 and FACOM M- 1800/20 
systems. 

2.2. Verticalpipe 
The physical model under consideration is illus- 

trated in Fig. l(b). The pipe wall is insulated in the 
upstream region (x’ < 0) and kept at a constant tem- 
perature in the downstream region (x’ > 0), similar to 
the situation of a horizontal pipe. Numerical analyses 
are conducted for the fluid heating and cooling with 
upward flow, in which the fluid flow is axially sym- 
metric and thus becomes two-dimensional. The results 
obtained from the analyses are applicable to the case 
of the fluid cooling and heating with downward flow, 
if the fluid properties are constant. The governing 
equations of continuity, momentum and energy and 
the Poisson equation of pressure are represented by 
those eliminating the terms related to the angle # and 
the velocity component V in equations (l), (2), (4), 
(5) and (lo), respectively. Then, in the momentum 
equation in the vertical direction, the buoyancy term 
- (2/Re)Gr* rQ is included. Here, the value of Gr is 
positive for the heating case and negative for the cool- 
ing case. Also, in the Poisson equation of pressure, 
the buoyancy term 2(Gr/Re) (&?/a~) (d</dx) is added. 
For the axial distance, the following transformation 
is used instead of equation (9) : 

c= 1/(1--10x)-l for -co <xtO 

E = 1--1/(1+10x) for 0 <x Q cc. (19) 

The boundary conditions are the same as those 
described by equations (12))(15) except that the 
pressure condition in equation (12) is modified by 
(dp/ac)(d</dx) = - 16-4(Gv/Re), and the buoyancy 
term included in equation (14) is eliminated. Using P 
defined by equation (17), the pressure conditions at 
infinite upstream and downstream are written as 

ir= l,O<v< 1: aPjar = 0. (20) 
Using the same numerical method as for a horizontal 
pipe, the solutions were obtained for Pe = 0.7-71 and 
] Gr/Ke I = 50-500 (Pr = 0.007, 0.025, 0.1, 0.71, 
Re = 50, 100 and I Gr / = 5000, 10 000, 20 000, 
50000). Two mesh sizes (26 x 51 and 51 x 101 ; r, 5) 

are used, and no significant differences are seen in the 
results. 

3. RESULTS FOR HORIZONTAL PIPE 

3.1. Velocity proJiles 
The axial variation of velocity profiles along the 

vertical centerline is shown in Fig. 2. The effect of 
axial conduction with decreasing Pr on the velocity 
profiles can be clearly seen in Figs. 2(a)-(d), which 
correspond to the cases of Pr = 0.71, 0.1, 0.025 and 
0.001 withRe = 100 (Pe = 71, 10,2.5andO.l), respec- 
tively, at a given Gr of 5000. Generally, the initial 
parabolic velocity profile is gradually distorted and 
becomes asymmetric as the maximum velocity dis- 
places toward the bottom pipe wall. In the case of 
Pv = 0.71 (Pe = 71) (Fig. 2a), the parabolic profile is 
maintained in the upstream region except very near 
the inlet of heating section (5 = 0), where a slight 
distortion is observed. In the cases of lower Pv, as 
shown in Figs. 2(b) and (c), the parabolic profile is 
distinctly distorted in the upstream region and some 
reverse flow with negative velocity appears near the 
top pipe wall. When the Prandtl number is much lower 
at Pr = 0.001 (Pe = 0.1) (Fig. 2d), asymmetric vel- 
ocity influenced by free convection occurs far 
upstream. However, because of the small local tem- 
perature difference due to the dominant axial conduc- 
tion, the distortion of velocity profiles does not 
become so large. The effect of increasing Gr is seen in 
Figs. 2(e) and (f), which show the velocity profiles for 
the cases of Pr = 0.025 and 0.007 (Pe = 2.5 and 0.7) 
with a higher Gr of 20 000. Violent reverse flows are 
observed at far upstream locations, and both free con- 
vection and axial conduction effects play a pro- 
nounced role simultaneously. Relatively, the dis- 
tortion of velocity profile in Fig. 2(e) becomes weaker 
than that in Fig. 2(f) owing to a smaller Pr of 0.007. 
At far downstream locations, the parabolic profiles 
reappear with diminishing free convection. 

Figure 3 shows the regime of reverse flow occur- 
rence for practical Pe ranging from 0.3 to 10. The 
occurrence of reverse flow mainly depends on Re and 
Gr and also slightly on Pr, so the coordinates Pe and 
Ra are used in Fig. 3. The reverse flow occurs under 
the condition shown by open symbols. The dashed 
line (almost linear in the logarithmic coordinates) 
indicates the limitation of the reverse flow occurrence. 
As will be discussed later, the occurrence of reverse 
flow diminishes the heat transfer in low Pe flows, so 
that Fig. 3 is practically important to predict flow 
reversal. 

The secondary flow velocity vectors at the axial 
location t = 0.08 (x//r; = 0.145), very near the inlet 
of the heating section, are presented in Fig. 4 for 
Pr = 0.025 and 0.001 (Pe = 2.5 and 0.1). It is seen 
that the secondary flow already develops at the 
location where the heating just begins. In Fig. 4(a), 
the fluid flows upward along the pipe wall and down- 
ward in the central region, since the fluid is warm near 
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(a) 

-1 -0.8 -0.4 0 0.4 0.8 1 
E , 

(b) E = -0.8 -0.4 0 0.4 . 08 ‘%.-?- 

(e) 

FIG. 2. Velocity profiles along vertical centerline in a hori- 
zontal pipe: (a) Pr = 0.71 (Pe = 71), Ra = 3550; (b) 
Pr = 0.1 (Pe = lo), Ra = 500; (c) Pr = 0.025 (Pe = 2.5), 
Ra = 125; (d) Pr = 0.001 (Pe = O.l), Ra = 5 ; (e) 
Pr = 0.007 (Pe = 0.7), Ra = 140; (f) Pr = 0.025 (Pe = 2.5), 

Ra = 500. 

10. I 

7’ 
/‘A 

E //’ 
?? /6 0 0 

./ 

*F G-Reverse Flow 
I: I’ ??,0/ 0 0 

/’ Re 1 
/’ .olOO - 

-yoo 0 * * 200 
?? 300 

0.1, I 
10 100 1000 

Ra 
FIG. 3. Regime of reverse flow occurrence for a horizontal 

pipe. 
I 

the wall and cold in the center of the pipe. As the Ra 
is higher (Fig. 4b), the secondary flow becomes much 
stronger and more complex. The flow pattern with 
two vortices in the upper and lower regions of pipe 
can be observed, in relation to that the reverse flow 
occurs at the upper region of pipe and the maximum 
velocity moves toward the bottom pipe wall, as shown 
in Fig. 2(f). On the other hand, the secondary flow 
becomes quite weak at very low Pr of 0.001 (Fig. 
4c), because of the much smaller difference of local 
temperature. 

3.2. Wall shear stress 
The circumferential and axial variations of local 

waI1 shear stress are shown in Fig. 5. The dimen- 
sionless local shear stress at the wall r,,,+ is defined by 

rw9 = - #U(aw’/ai) V’ = rb,&W;2/2) 

= - (4/Re>(dw/dr>, = I,+ . (21) 

Since the main flow is forced down toward the pipe 
bottom by the secondary flow the local wall shear 
stress varies along the circumferential position with a 
maximum at the pipe bottom # = TI: and a minimum 
at the pipe top r$ = 0. The axial variations of the shear 
stresses at the bottom and top pipe walls exhibit a 
peak and a valley. As Pr becomes small the effect of 
axial conduction reaches far upstream locations and 
thus the local peak and valley move upstream. With 
increasing Ra the wall shear stresses at the top and 
bottom pipe walls show a higher peak and a deeper 
valley. At Pr = 0.025 and 0.007 (Pe = 2.5 and 0.7) 
(Figs. 5b, c), the wall shear stress takes negative values 
at the top pipe wall due to the occurrence of reverse 
flow. At far downstream locations, the value of 
z,Re = 16 for the Poiseuille flow is approached as the 
free convection effect diminishes. 

3.3. Temperature projiles 
Figures 6(a)-(c) show the axial variation of 

temperature profiles along the vertical centerline 
(4 = 0 and rc) for the cases of Pr = 0.71, 0.025 
and 0.001 (Pe = 71, 2.5 and O.l), respectively. In 
these figures, each of the scales in the coordinate axis 
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Ia) (b) 

FIG. 4. Secondary flow patterns at 4 = 0.08 (k/?-b = 0.145) in a horizontal pipe : (a) Pr = 0.025 (Pe = 2.9, 
Ra = 125; (b) Pr = 0.025 (Pe = 2.59, Ra = 500; (c) Pr = 0.001 (Pe = O.l), Ra = 5. 

5 stands for a zero point of each temperature profile 
(1 - 0) = (tb - t’)/(tG - t;) at the corresponding 
iocation g. The effect of Pr on temperature profiles 
is clearly seen in Fig. 6. In the case of Pv = 0.71 
(Pe = 71) (Fig. 6a), the temperature variation in the 
upstream region due to the axial conduction effect 
only appears very near the beginning of heating. The 
entrance fluid temperature is kept in the pipe core 
until about c = 0.40 (x//r& = 1. I 1). On the other 
hand, as Pr decreases, the temperature variation in 
the upstream region becomes larger and extends 
upstream farther than 4 = - 0.40 (x’/r& = - 1.11) and 
E = -0.64 (x//r;, = -2.96) for PY = 0.1 (Pe = 10) 
and Pr = 0.025 (Pe = 2.5), respectively, as seen in 
Figs. 6(b) and (c). In the very low PP case (Fig. 6e), 
the fluid temperature begins to vary at a location 
farther than 4 = -0.88 (L/r& = - 12.22) owing to the 
dominant axial conduction effect. 

The effect of free convection on temperature profile 
is also seen in Fig. 6. For Pr from 0.71 to 0.025 (Pe 
from 71 to 2.5) (Figs. 6a-d), the fluid temperature in 
the upper pipe region becomes higher and the tem- 
perature minimum is shifted toward the pipe bottom, 
since the warmer fluid near the pipe wall moves 
upward and the colder fluid in the central region 
moves downward. Thus, the temperature profile is 
gradually distorted and becomes asymmetric. In the 
insulated upstream region, free convection makes 
the wall temperature at the pipe top higher than that 
at the pipe bottom. However, such behavior is un- 
noticeable for Pe = 0.1 (Fig. 6e) because the promi- 
nent axial conduction weakens the effect of free con- 
vection. 

The axial velocity contours and isotherms at 
the location near the beginning of heating, l = 0.08 
(x’/vL = O-145), are depicted in Fig. 7. It is seen 
that the close similarity between the velocity and 
temperature profiles existing in the case of air [5] is 
entirely lost in low Pe flows. The reverse flow region 
appears near the pipe top at Pr = 0.025 (Pe = 2.5) 

with Ra = 125 (Fig. 7a) and extends to about a third 
of the whole pipe section with increasing Ra (Fig. 7b). 
Consequently, the velocity of main flow in the lower 
pipe region increases to conserve the mass flow rate, 
as already seen in Fig. 2(f). On the other hand, at a 
very low Pr (Fig. 7c), the temperature profile becomes 
symmetric and the velocity profile has relatively less 
asymmetry. 

The dimensionless bulk temperature, defined by the 
following equation, is plotted in Fig. 8, as a function 
of the dimensionless axial distance for various Pe : 

1 

ss 

2% 1 2rr 

8, = Bwr d+ dr 
:‘Is 

wrd+dr. (22) 
0 0 0 0 

It is found that the axial conduction effect is negligible 
for Pe > 71 but becomes important for lower Pe 
flows. This conclusion fundamentally coincides with 
that obtained analytically for pure forced convection 
[13, 141. 

The bulk temperature variation in the wide 
range of axial distance at Pr = 0.025 (Pe = 2.5) for 
various Ra is presented in Fig. 9, which shows 
the relation between free convection and the axial 
conduction effects. In the far upstream region about 
(x’/rb)/Pe -c -0.4 (xl/r; -=c - I), the bulk tem- 
perature 1 - 8, becomes higher than that at Ra = 0 
and increases with increasing Ra. This means 
that the free convection consequently promotes 
the axial conduction effect. However, in the region 
(x’/rb)/Pe > -0.4, the bulk temperature becomes 
lower than that in forced flow and weakens the axial 
conduction effect with increasing Ra, in connection 
with the occurrence of reverse flow near the top pipe 
wall. 

3.4. Nusselt number 
The local Nusselt number is defined by 

Nu, = 2rb h&/A = - (2/Q,) (iM/ar), = r,+ . (23) 
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(a) 

(b) 

0. 
/ I I I 

0 0.2 0.4 
(x’Wo)/Pe 

2100. 

s 50. 

0. 

Pr=O.025(Pe=2.5) 
--- Ra=i25 
__ Ra=500 

-50. 

-2 0 2 
(x’/r’d/Pe 

(c) 
Pr=O.O07(Pe=0.7) 

- Ra=140 

0. 

-50. 
I I I I 

-20 -10 0 IO 20 
(x’/rlo)/Pe 

(d) 40.1 I I 
Pr=O.OOl (PezO.1) 

g30.- Ra=5 

I? 
20.- 

lO.- 

0.+--l 
I I I , I I 

-200 -100 0 100 
(x’lr’0)lPe 

FIG. 5. Variations of local wall shear stress in a horizontal 
pipe: (a) Pr = 0.71 (Pe = 71), Ra = 3550; (b) Pr = 0.025 
(Pe = 2.5), Ra = 125, 500; (c) Pr = 0.007 (Pe = 0.7), 

Ra = 35, 140; (d) Pr = 0.001 (Pe = O.l), Ra = 5. 

,The variation of the local Nusseltnumber is shown in 
Fig. IO for the cases of Pr = 0.71 and 0.025 (Pe = 71 
and 2.5). For Pr = 0.71 (Pe = 71) (Fig. lOa), the 
difference in Nu, between the top (4 = 0) and bottom 
(4 = 7~) pipe walls gradually increases with developing 
secondary flow, and reaches a maximum at the 
location about (x’/vi)/Pe = 0.07(x’/& = 5) where the 
secondary flow is most intense. For Pr = 0.025 
(Pe = 2.5) (Fig. lob), however, the difference in Nu, 
takes a maximum at the beginning of heating and then 
decreases monotonously in the downstream direction. 
As Pr is reduced the effect of axial conduction 

(a) 
4 = -9.4 0 

(b 

Cd) C = ,-0.8 -0.4 0 0.4 0.8 %r-r-l- l-0, 

II I I I I I1 I r I I I I, I I I,, , I  ,I,,, 

-1-0.8 -0.4 0 0.4 0.8 1 
C 

(e) l--&J 
E =%--0.8 -c&4 Q 0.4 I o.+ LrY- 

FIG. 6. Temperature profiles along vertical centerline in a 
horizontal pipe: (a) Pr = 0.71 (Pe = 711, Ra = 3550; (b) 
Pr = 0.1 (3% = lo), Ra = 500; (c) Pr = 0.025 (Pe = 2.5), 
Ra = 125; (d) Pr = 0.025 (Pe = 2.5), Ra = 500; (e) 

Pr = 0.001 (Pe = O.l), Ra = 5. 

becomes more pronounced and the temperature pro- 
file begins to vary in the far upstream region. Con- 
sequently, the secondary Aow already develops before 
the Auid enters the heating section and the difference 
in Nu, between the top and bottom pipe walls becomes 
maximum at the heating section inlet. 
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FIG. 8. Bulk temperature variations in a horizonta .l pipe. 

FIG. 7. Axial-velocity contours and isotherms at < = 0.08 (x’/ r;l = 0.145) in a horizontal pipe : (a) Pr = 0.025 
(Pe = 2.5), Ra = 125; (b) Pr = 0.025 (Pe = 2.3, Ra = 500; (c) Pr = 0.001 (Pe = O.l), Ra = 5. 

Wr’0VPe 
2 

The circumferential average Nusselt number is 
obtained from 

Nu = & I 
2n 

Nu, d$ . 
0 

(24) 

Figure 11 shows the variations of circumferential aver- 
age Nusselt number for Pr = 0.025, 0.007 and 0.003 
(Pe = 2.5, 0.7 and 0.3) with various Ra. It is known 
that the secondary flow occurrence with increasing Ra 

- 500 

0 1 
(x’/r’d/Pe 

FIG. 9. Bulk temperature variations at Pr = 0.025 (Pe = 2.5) 
in a horizontal pipe. 

enhances the circumferential average Nusselt number 
for air [5] and larger Pr fluids [6]. For low Pr fluids 
such as liquid metals, however, the circumferential 
average Nusselt number tends to decrease with 
increasing Ra, as seen in Fig. 11. As Ra increases, the 
secondary flow becomes much more intense and a 
rather strong reverse flow occurs, so that the fluid 
temperature rises in the upper region of the pipe and 
the temperature gradient becomes small at the top 
pipe wall. Hence, the local Nusselt number Nu, is 
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Pr=0.71 (Pe=71) 
Ra=3550 
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(x’/r’oVPe 
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Pr=0.025(Pe=2.5) 
--- Ra=125 
- Ra=500 

FIG. 10. Local Nusselt number in a horizontal pipe: (a) 
Pr = 0.71 (PP = 71), Ra = 3550; (b) Pr = 0.025 (Pe = 2.5), 

Ra = 125, 500. 

(a) 12.1 I 
Pr=0.025(Pe=2.5) 
------ Razl25 
--- Ra=250 
- Ra=500 

1 I . . ...I 1 . . .... I , . . ..A 
0.01 0.1 1 10 

(x’/r’d/Pe 

- Pa=60 

Pr=0.007(Pe=0.7) 
--- Aa=35 
- Ra=l40 

(x’/r’d/Pe 

FIG. 11. Circumferential average Nusselt number in a hori- 
zontal pipe : (a> Pr = 0.025 (Pe = 2.5) ; (33) Pr = 0.007,0.003 

(Pe = 0.7, 0.3). 

for Pr > 0.1 (Pe > 10) but decreases that for 
Pr = 0.003-0.025 (Pe = 0.3-2.5). 

Figure 12 shows the axial variations of the circum- 
ferential average Nusselt number against various Pe 
numbers. In the cases of Pe Z 10, the circumferential 
average Nusselt number takes a local maximum at 
the location where the secondary flow becomes most 
intense. After reaching a 1ocaI maximum, the average 
Nusselt number decreases until the asymptotic value 
of NU = 3.66 for the thermally developed flow is 
approached. The behavior of the average Nusselt 
number for larger Pe and Ra cases is on the whole the 
same as that obtained with the large Prandtl number 
assumption by Ou and Cheng [4]. For Pe d 2.5, on 
the other hand, the average Nusselt number decreases 
tionotonously with increasing axial distance, as 
described above, and approaches the asymptotic 
value. This asymptotic value depends on Pe and varies 
from 3.66 for moderate and large Pe to 4.18 for 
Pe = 0, which is in agreement with the analysis of 
pure forced convection [I 31. 

4. RESULTS FOR VERTICAL PIPE 

4.1. Velocity pro3le.s 
The axial velocity profiles for the cases of heating 

and cooling in upward flow are shown in Figs. 13 and 
14, respectively. In the heating cases (Fig. 13), the 
velocity profile is gradually distorted from the para- 
bolic shape and becomes concave, because the fluid 
temperature near the pipe wall is highest and the fluid 
velocity accelerates in this region, while the velocity 
of colder fluid in the pipe core is reduced according to 
the mass conservation. In the cooling cases (Fig. 14), 
on the contrary, the profile is distorted with the vel- 
ocity increase at the pipe center, since the fluid tem- 
perature near the pipe wall is lowest and the fluid 
velocity decelerates in the near-wall region. 

In Figs. 13(a) and 14(a) (Pr = 0.71 with 
IGr/Re 1 = 50), since the axial heat conduction has 
little effect, the velocity profile keeps the initial shape 
in the upstream region except for the slight distortion 
at the location very near the beginning of heating or 
cooling section. The velocity minimum with a negative 
value appears at the pipe center in the heating case 

reduced extremely at the top pipe wall, and the circum- 
ferential average Nusselt number consequently 
deteriorates. In conclusion, the increase of Ra 
enhances the circumferential average Nusselt number 

100 
(x’/r’o)/Pe 

FIG. 12. Circumferential average Nusselt number at 
Pe = 700-0.01 in a horizontal pipe. 
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FIG. 13. Velocity profiles for heating cases in a vertical pipe: (a) Pr = 0.71 (Pe = 71), Gr/Re = 50; 
(b) Pr = 0.1 (Pe = lo), Gr/Re = 200 ; (c) Pr = 0.025 (Pe = 2.5), Gr/Re = 200. 
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14. Velocity profiles for cooling cases in a vertical pipe: (a) Pr = 0.71 (Pe = 71), Gr/Re = -50; 
(b) Pr = 0.1 (Pe = lo), Gr/Re = -200; (c) Pr = 0.025 (Pe = 2.5), Gr/Re = -200. 
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Fri;. 15. Streamlines for heating cases in a vertical pipe : (a) Pr = 0.71 (Pe = 71), Gr/Re = 50 ; (b) Pr = 0.1 
(Pe = lo), Gr/Re = 200; (c) Pr = 0.025 (Pe = 2.9, Gr/Re = 200. 

(b) 1 

FIG. 16. Streamlines for cooling cases 
Pr = 0.1 (Fe = lo), Gr/Re 

in a vertical pipe: (a) Pr = 0.71 (Pe = 71), Gr/Re = -50; (b) 
= -200; (c) Pr = 0.025 (Pe = Z-5), Gr/Re = -200. 



2316 M. WANG rt al. 

(4 1005 ““I 
4 Re 

\ 
\ AA 50 
+a ??o 100 

\ 
$ 

\ 
\,- Reverse Flow 

\ \ 
10: . . bo 

‘\ \ \ \ \ 
. . ‘% 

4 -,‘,‘. 100 1000 
Gr/Re 

(bj 100. c - - - #‘I 
.k 0 Re : 

\ A*50 
+A P -0 ioo 

t 
\ 3 

l? 
\ 
\,+ Reverse Flow 

\ 

1 .,,““’ 100 1000 
-GrlRe 

Frc;. 17. Regime of reverse flow occurrence for a vertical 
pipe : (a) heating case ; (b) cooling case. 

and near the wall in the cooling case, respectively, and 
a ffow reversal is produced. In Figs. 13(b) and 14(b) 
(Pr = 0.1 with 1 Gr/Re 1 = ZOO), a strong buoyancy 
force due to a higher / Gr/Re 1 results in the marked 
distortion of velocity profile and extends the flow 
reversal region. Simultaneously, because the axial con- 
duction effect becomes significant, the velocity profile 
begins to vary even in the upstream region. The vel- 
ocity profiles shown in Figs. 13(c) and 14(c) are for 
PI = 0.025 with 1 Gr/Re I = 200. In either case, the 
axial conduction has a remarkable effect. However, 
since the local temperature difference becomes smaller 
than that in the cases of PI- = 0.1 and 0.71, the dis- 
tortion of the velocity profile is relatively weak. 

II I I I 1 I I 1 I I I 
-1 0 1 2 3 4 

(x’Ko)lPe 

FIG. 18. Variations of local wall shear stress in a vertical 
pipe: (a) Pr =0.71 (Pe= 71); (b) PF= 0.1 (Pe= IO); 

(c) PT = 0.025 (Pe = 2.5). 

Dimensionless streamline plots presented in Figs. 
15 and 16 correspond with the heating and the cooling 
cases shown in Figs. 13 and 14, respectively. The inter- 
val of streamlines is mostly 0.06 except in the recir- 
culating region where the streamlines are depicted at 
an interval of less than 0.06. These figures clearly show 
the locations, sizes and shapes of the A ow recirculation 
regions appearing at the center of the pipe in the 
heating cases (Figs. 15a, b) and in the vicinity of the 
pipe wall in the cooling cases (Figs. 16a, b). In both 
heating and cooling cases of Pv = 0.1 with 
1 Gr/Rr 1 = 200 (Figs. 15b and 16b), quite a strong 
buoyancy force and relatively significant axial con- 
duction effect play an important role simultaneously, 
as mentioned before, so that the flow recirculation 
regions extend and approach the beginning location for the same Pe the 1 Gr-/Re 1 value demarcating the 

of heating or cooling. In spite of the same values of 
Pp. and I Gr/Re 1, the flow recirculation region in the 
heating case is generally smaller and farther from the 
location of c = 0 than in the cooling case. This results 
from the fact that the initial velocity at the pipe center 
is larger and thus the occurrence of flow reversal in 
the heating case requires a higher buoyancy force and 
a longer distance to develop. The streamline plots in 
Figs. 15(c) and 16(c) correspond with the velocity 
profiles shown in Figs. 13(c) and 14(c), respectively. 
The flow reversal is not produced in Fig. 15(c) and 
just appears in the very small region in Fig. 16(c) 
because of a relatively weaker buoyancy force. As Pr 
further decreases to Pr = 0.007 with I Gr/Re J = 200, 
the velocity profile shows only a slight distortion and 
the flow reversal does not occur even at the high 
I Gr/Re 1 of 500. 

The regime of the reverse flow occurrence in the 
coordinates Pe and 1 Gr/Re I is given in Fig. 17. A 
reverse flow occurs under the condition positioned in 
the right-hand side of the dashed line. It is found that 

Pr=0.71 (Pe=71) 
- Heating 
--- Cooling 

0.-\- _//’ 
\ --_-’ I I I / I I I 

0 0.2 0.4 0.6 C 

(x’/r’a)/Pe 

lb) 80. PkO.1 (Pe=lO) 
- Heating 
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k_- 

-40. o I I I 
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2 
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220. 
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FE. 19. Temperature profiles for PI- = 0.1 (PC = 10) with IGr./Rel = 200 in a vertical 

case ; (b) cooling case. ‘ 1 
pipe: (a) heating 

Pk0.71 (Pe=71) 
- Heating 
--- Cooling 

I . . . . ..IL 
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FIG. 20. Nusselt number in a vertical pipe : (a) PI_ = 0.7 I 
(Pe - 71); (b) I+ = 0.1 (Pe = 10); (c) Pr = 0.025 

(Pr = 2.5). 

Aow reversal in the heating case is approximatety two 
times that in the cooling case. At Pe > 50, the demar- 
cation value tends to approach an asymptotic value 
independent of Pe. 

4.2. WuIZ sheur stress 
The wall shear stress distributions with a parameter 

Gr/Re are presented in Fig. 18 for both heating and 
cooling cases. The wall shear stress in pure forced flow 
at Gr/Re = 0 takes a constant value (~,,.Re = 16). In 
the heating cases, since the velocity near the pipe wail 
accelerates, the wall shear stress increases with increas- 
ing Gr/Re. The peaks of z,,. at Pr = 0.71 and 0.1 
(Pe = 71 and 10) occur at the locations where flow 
reversals begin to appear at the pipe center. In the 
cooling cases, on the contrary, the wall shear stress 
becomes smaller due to the deceleration of velocity 
near the pipe wall and decreases with increasing 
] GrjRe 1. The wall shear stress is negative over the 
flow reversal region. Additionally, because of the axial 
conduction, the wall shear stress begins to vary at a 
far upstream location with decreasing Pr, and the 
maximum and minimum locations also move toward 
the upstream. The wall shear stress returns to the 
asymptotic value of z,,.Re = 16 far downstream, and 
the distance to the location where the asymptotic value 
is approached becomes longer in the cooling cases 
than in the heating cases for low Pr, as seen in Figs. 
18(b) and (c). 

4.3. Tempemture prqfiles 
The temperature profiles at various axial locations 

in the cases of Pr = 0.1 and 1 Gr/Re 1 = 200 are pre- 
sented in Fig. 19. In this figure, each of the scales in 
the coordinate axis C$ stands for a zero point of each 
temperature profile (1 - 0) = (t& - t’)/(tb - t:,.) at the 
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